The Crystal and Molecular Structures of Bis[bis-(π-cyclopentadienyl)niobium(V)-bis-μ-methanethiolato]nickel(0) Tetrafluoroborate Dihydrate and Bis[bis-(π-cyclopentadienyl)molybdenum(IV)-bis-μ-methanethiolato]nickel(II) Tetrafluoroborate

BY KEITH PROUT, STEPHEN R. CRITCHLEY AND GRAHAM V. REES

Chemical Crystallography Laboratory, Oxford University, South Parks Road, Oxford OX1 3QS, England

(Received 7 May 1974; accepted 11 May 1974)

The structures of the title complexes have been determined from linear diffractometer data by X-ray methods. For the Nb complex: a=11.44, b=33.56, c=8.33 Å, $\gamma=92.7^{\circ}$, space group $P2_1/b$, Mo Ka radiation, 1595 reflexions, final R=0.096. For the Mo complex: a=10.15, b=18.82, c=7.85 Å, $\beta=95.0^{\circ}$, space group $P2_1/a$, Mo Ka radiation, 1839 reflexions, final R=0.072. The Nb complex, which is diamagnetic, formally contains Nb(V) and Ni(0). The Ni atom has tetrahedral coordination and the short (2.78 Å) Nb-Ni contact may correspond to a metal-metal bond. In contrast the Mo complex formally contains Mo(IV) and Ni(II); the Ni atom has square-planar coordination and the Mo-Ni contact (3.39 Å) is much longer.

Complexes of the type $(\pi$ -C₅H₅)₂M(SCH₃)₂, M = Nb, Mo or W, react with NiCl₂ and (C₆H₅CN)₂Pd(or Pt)Cl₂ to give trinuclear complexes of the form

 $(\pi$ -C₅H₅)₂M(SCH₃)₂M'(SCH₃)₂M(π -C₅H₅)₂²⁺A₂²⁻, M = Nb, Mo, W; M' = Ni, Pd or Pt (Dias & Green, 1969, 1971). The Mo and W complexes were thought to contain d^8 square-planar metal M' and, by analogy, the metals M would be described as d^2 . In the Nb complexes, however, there are two fewer electrons, formally one less associated with each of the two Nb atoms, although the complex remains diamagnetic. The structures were determined in an attempt to elucidate the chemical and electronic structures of the complexes. A preliminary account of part of this work has appeared (Douglas, Green, Prout & Rees, 1971).

Experimental

Preparation

The compounds were prepared by Douglas & Green (1972).

X-ray structure analysis

(i) $Bis[bis-(\pi-cyclopentadienyl)molybdenum(IV)-bis-\mu-methanethiolato]nickel(II) tetrafluoroborate$

 $C_{24}H_{32}Mo_2NiS_4(BF_4)_2$, M = 872.9, monoclinic, a = 10.15 (1), b = 18.82 (2), c = 7.85 (1) Å, $\beta = 95.0$ (1)°, $D_m = 1.916$ g cm⁻³ (by flotation), Z = 2, $D_c = 1.917$ g cm⁻³, systematic extinctions: h0l, h odd, 0k0, k odd, space group $P2_1/a$, $(C_{2h}^5$, No. 14, second setting), $\pm (x, y, z; \frac{1}{2} + x, \frac{1}{2} - y, z)$, Mo K α radiation, $\lambda = 0.7107$ Å, $\mu = 17.5$ cm⁻¹.

Preliminary cell dimensions and the space group were determined from oscillation and Weissenberg photographs. A single crystal $(0.2 \times 0.2 \times 0.5 \text{ mm})$ was mounted about **c** and the intensities of the reflexions of layers hk0-hk8 were recorded on a Hilger and Watts linear diffractometer with Mo K α radiation and balanced filters. 1839 independent reflexions with $I > 3\sigma$ were measured and Lorentz and polarization corrections (but no absorption corrections) were applied.

In space group $P2_1/a$, the two cations must lie about the centres of symmetry with the Ni atom at a centre whilst the anions occupy general positions. From the unsharpened Patterson function the positions of the Ni (at $\frac{1}{2}$, 0, 0 and 0, $\frac{1}{2}$, 0) and the Mo were determined. The other non-hydrogen atoms of the cation were obtained from subsequent Fourier syntheses. After the positions of the atoms of the cation had been improved by one cycle of full-matrix least-squares refinement with isotropic temperature factors and unit weights, a possible location of the anion was found from a difference synthesis as a group of diffuse peaks. Least-squares refinement continued with anisotropic temperature factors for the atoms of the cation and isotropic temperature factors for the anion. The refinement converged at R = 0.08, but the temperature factors of the atoms of the anion were unsatisfactory and its geometry was poor. In another difference synthesis, computed with the F atoms excluded from the phasing, there were, in the neighbourhood of the B atom, five peaks, three large in extent but diffuse in positions appropriate for three F atoms and two smaller, sharper and closer together in the region where the fourth F was expected. Clearly the anion was disordered in a fairly complex manner. It was decided that the anion was best represented by a tetrahedral arrangement of F atoms with anisotropic thermal motion even though this was a gross approximation to the real situation. The refinement then proceeded to the convergence of the well defined atoms at R=0.072. Calculations were carried out on the Oxford University ICL 1906A with a program system kindly supplied by Dr G. M. Sheldrick (1972). This program system applies a weighting scheme of the form: $w = A + |F_o| + B|F_o|^2$. The constants A and B are based on the approximate values suggested by Cruickshank (1961). The atomic scattering factors were from Cromer & Waber (1965).

(ii) Bis[bis- $(\pi$ -cyclopentadienyl)niobium(V)-bis- μ -methanethiolato]nickel(0) tetrafluoroborate dihydrate

 $C_{24}H_{32}Nb_2NiS_4(BF_4)_2.2H_2O, M=902.8$, monoclinic, a=11.44 (1), b=33.56 (3), c=8.33 (1) Å, $\gamma=92.7$ (1)°, $D_m=1.84$ g cm⁻³ (by flotation), Z=4, $D_c=1.88$ g cm⁻¹, systematic extinctions hk0, k odd, 00l, l odd. Space group $P2_1/b$, $(C_{2h}^5$, No. 14, first setting), Mo Ka radiation, $\lambda=0.7107$ Å, $\mu=15.9$ cm⁻¹.

Preliminary cell dimensions and the space group of a dark red-brown crystal, $0.3 \times 0.1 \times 0.7$ mm, mounted about the unique *c* axis were determined from Weissenberg and precession photographs. The cell dimensions were refined and the intensities of 1595 independent reflexions with $I > 3\sigma$ and tolerably equal backgrounds (layers hk0-8) were measured on a Hilger and Watts linear diffractometer with balanced filters. Lorentz and plarization corrections were made.

The positions of the metal atoms were determined from an unsharpened Patterson function. A Fourier analysis phased on these atoms gave the positions of the S atoms and C atoms of the cyclopentadienyl rings. All the remaining non-hydrogen atoms except for one water oxygen were located from the subsequent difference syntheses. The trial structure was refined by three cycles of least-squares calculation with isotropic temperature factors, unit weights and a 'large block' approximation to the normal matrix. The remaining Table 2. Bis[bis-(π-cyclopentadienyl)molybdenum(IV)bis-μ-methanethiolato]nickel(II) tetrafluoroborate: interatomic distances (Å) and interbond angles (°)

$\begin{array}{l} \text{Ni} &\text{S}(1) \\ \text{Ni} &\text{S}(2) \\ \text{Mo} &\text{S}(2) \\ \text{S}(1) &\text{C}(1) \\ \text{S}(2) &\text{C}(2) \\ \text{Mo} &\text{C}(12) \\ \text{Mo} &\text{C}(13) \\ \text{Mo} &\text{C}(13) \\ \text{Mo} &\text{C}(13) \\ \text{C}(11) &\text{C}(12) \\ \text{C}(12) &\text{C}(13) \\ \text{C}(13) &\text{C}(14) \\ \text{C}(14) & -\text{C}(15) \\ \text{C}(15) & -\text{C}(11) \\ \text{Mo} &\text{C}(21) \\ \text{Mo} &\text{C}(22) \\ \text{Mo} &\text{C}(22) \\ \text{Mo} &\text{C}(23) \\ \text{Mo} &\text{C}(23) \\ \text{Mo} &\text{C}(24) \\ \text{Mo} &\text{C}(23) \\ \text{C}(23) &\text{C}(24) \\ \text{C}(25) &\text{C}(24) \\ \text{C}(25) \\ \text{C}(23) &\text{C}(24) \\ \text{C}(25) \\ \end{array}$	$\begin{array}{c} 2.149 (3) \\ 2.235 (3) \\ 2.491 (3) \\ 2.514 (3) \\ 1.80 (2) \\ 2.28 (2) \\ 2.27 (2) \\ 2.28 (1) \\ 2.33 (1) \\ 2.35 (1) \\ 1.40 (2) \\ 1.40 (3) \\ 1.41 (3) \\ 1.39 (3) \\ 1.39 (3) \\ 2.29 (2) \\ 2.36 (2) \\ 2.26 (2) \\ 2.26 (2) \\ 2.25 (2) \\ 2.18 (2) \\ 1.38 (2) \\ 1.43 (2) \\ 1.43 (2) \\ 1.43 (2) \end{array}$
$\begin{array}{c} C(25)-C(21) \\ S(1)MoS(2) \\ S(1)NiS(2) \\ C(1)S(1)Mo \\ C(1)S(1)Ni \\ MoS(1)Ni \\ C(2)S(2)Mo \\ C(2)S(2)Ni \\ MoS(2)Ni \\ C(11)-C(12)-C(13) \\ C(11)-C(12)-C(13) \\ C(11)-C(12)-C(13) \\ C(13)-C(14)-C(15) \\ C(14)-C(15)-C(11) \\ C(15)-C(11)-C(12) \\ C(21)-C(22)-C(23) \\ C(22)-C(23)-C(24) \\ \end{array}$	$\begin{array}{c} 1.37 (3) \\ 70.3 (1) \\ 82.2 (1) \\ 113.5 (7) \\ 114.3 (6) \\ 93.6 (1) \\ 112.2 (5) \\ 104.6 (5) \\ 90.9 (1) \\ 106 (2) \\ 110 (2) \\ 107 (2) \\ 109 (1) \\ 109 (2) \\ 110 (2) \\ 108 (1) \end{array}$

Table 1. Bis[bis- $(\pi$ -cyclopentadienyl)molybdenum(IV)-bis- μ -methanethiolato]nickel(II) tetrafluoroborate: final atomic parameters

	rla	v/b	7/0	11	П.,	17.	11	11.	11
	<i>x</i> / <i>u</i>	<i>y</i> /0	2/0		022	033	023		012
Мо	0.29324 (9)	0.12425(5)	0.1407 (1)	0.0310(5)	0.0259 (4)	0 • 0 434 (7)	0.0006 (4)	0.0068 (4)	0.0040 (3)
Ni	0.5000	0.0000	0.0000	0.0261 (9)	0.0243 (9)	0.0443(15)	-0·0004 (7)	0.0060 (8)	-0.0031(7)
S(1)	0.2977 (3)	0.0274 (1) -	-0.0749 (5)	0.0276 (13)	0.0301(13)	0.0572 (23)	-0.0052(12)	0.0037 (11)	-0.0024(10)
S(2)	0.5189 (3)	0.1176 (1)	0.0324 (5)	0.0295 (13)	0.0262 (12)	0.0522 (21)	-0.0014(10)	0.0068 (11)	-0.0053(9)
C(1)	0.1783(14) -	-0.0444 (8) -	-0.045 (4)	0.033 (7)	0.050 (8)	0.141 (21)	-0.033(10)	0.013 (8)	-0·014 (6)
C(2)	0.5200 (14)	0.1515 (8) -	-0.181 (3)	0.051 (7)	0.048 (7)	0.057 (11)	0.009 (6)	0.016 (6)	-0.006(6)
C(11)	0.2171(13)	0.1845(7) -	-0.100 (3)	0.045 (7)	0.045 (7)	0.066 (13)	0.012 (6)	0.004 (6)	0.010(5)
C(12)	0.1080 (14)	0.1562 (8) -	-0.025 (3)	0.044 (7)	0.044 (7)	0.092 (16)	<i>−</i> 0·004 (7)	0.009 (7)	0.002 (6)
C(13)	0.1051 (16)	0.1905 (10)	0.133 (3)	0.051 (8)	0.077 (11)	0.083 (17)	0.020 (10)	0.014 (8)	0.036 (8)
C(14)	0.2104(20)	0.2394(8)	0.156(3)	0.093 (13)	0.034 (7)	0.096 (19)	-0.021(8)	-0.013(11)	0.030 (8)
C(15)	0·2763 (13)	0.2362 (6)	0.008 (2)	0.053 (7)	0.032 (6)	0.047 (11)	0.001 (5)	-0.020(6)	0.002 (5)
C(21)	0.2125(18)	0.0638 (9)	0.362(3)	0.077 (11)	0.062 (10)	0.071 (16)	0.015 (8)	0.032 (10)	-0.013(8)
C(22)	0.3269 (18)	0.0278 (8)	0.332(3)	0.086 (11)	0.043 (8)	0.077 (16)	0.030 (8)	0.028 (10)	0.023 (8)
C(23)	0.4357(14)	0.0721(8)	0.359 (2)	0.057 (8)	0.063 (8)	0.033 (11)	0.007 (6)	0.001 (6)	0.007 (7)
C(24)	0.3909 (18)	0.1406 (9)	0.407(3)	0.078 (11)	0.062(9)	0.043 (13)	0.009 (7)	-0.017(8)	0.012(8)
C(25)	0.2449 (22)	0.1329 (11)	0.405 (4)	0.096 (13)	0.075 (12)	0.088 (19)	0.003 (10)	0.044 (12)	0.038 (10)
B(1)	0.3635 (24)	0.3505(11)	0.552(3)	0.093 (14)	0.056 (10)	0.061 (17)	-0.002(9)	0.035 (11)	0.004 (10)
F(1)	0.455 (3)	0.311 (1)	0.498 (7)	0.19 (2)	0.19 (2)	0.62 (8)	-0.21(4)	0.26 (4)	-0.06 (2)
F(2)	0.295 (6)	0.294(2)	0.584 (7)	0.45 (6)	0.20 (3)	0.24 (6)	0.06 (3)	0·16 (4)	-0.06(3)
F(3)	0·244 (2)	0.370 (2)	0.466(5)	0.10(1)	0.31 (4)	0.20 (4)	-0.01(2)	-0.01(2)	0.05 (2)
F(4)	0.424 (2)	0.405 (1)	0.639 (6)	0.25 (3)	0.13 (1)	0.30 (5)	-0.11 (2)	-0·05 (3)	0.07 (2)

Table 2 (cont.)

C(23)-C(24)-C(25)	104 (1)
C(24)-C(25)-C(21)	108 (1)
C(25)-C(21)-C(22)	109 (2)
B(1) - F(1)	1·30 (3)
B(1) - F(2)	1·30 (4)
B(1) - F(3)	1·38 (3)
B(1) - F(4)	1·35 (3)
F(1) - B(1) - F(2) $F(1) - B(1) - F(3)$ $F(1) - B(1) - F(4)$ $F(2) - B(1) - F(3)$ $F(2) - B(1) - F(4)$ $F(3) - 13(1) - F(4)$	90 (3) 128 (3) 108 (2) 81 (3) 138 (4) 113 (2)

90 (3)used for all calculations. The scattering factors were128 (3)taken from International Tables for X-ray Crystallog-108 (2)raphy (1962) corrected for the real part of the anomal-81 (3)ous dispersion.138 (4)113 (2)Results and description of structures

water molecule was then located at a suitable peak in a hole in the structure that had been detected by

The observed structure amplitudes and structure factors calculated from the final atomic coordinates (listed in Table 1 for the Nb compound and Table 3

Watkin's (1972) method. The refinement of the complete structure was first continued with anisotropic temperature factors for the heavy atoms and subsequently for all atoms of the cation. The refinement converged at R=0.086 after five cycles. The weighting scheme used was w=1 if $|F_o| < 104$, otherwise w = $(104/|F_o|)^2$. Rollett & Ford's Algol system (unpublished work) for the Oxford University KDF9 computer was

Table 3. Bis[bis- $(\pi$ -cyclopentadienyl)niobium(V)-bis- μ -methanethiolato]nickel(0)	tetrafluoroborate	dihydrate
final atomic parameters		

	x/a	y/b	z/c	U_{11} or U_{130}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Nb(1)	0.8314(2)	0.5852(1)	-0.1844(3)	0.025(1)	0.025(1)	0.027(2)	0.000(2)	-0.002(2)	0.002(2)
Nb(2)	0·4344 (2)	0.6425(1)	0·0983 (3)	0·031 (1)	0·023 (1)	0·031 (2)	-0.013(2)	0.006(2)	-0.006(2)
Ni(Ì)	0.6321(3)	0·6130 (1)	-0.0406 (5)	0·028 (1)	0.020(1)	0.030(2)	0.001(2)	0.004(3)	-0.002(2)
S(1)	0.8019(6)	0.6468(2)	-0.0274(10)	0.037(3)	0.030(3)	0.035(5)	-0.013(5)	0.002(6)	-0.021(5)
S(2)	0.5155(5)	0.6505(2)	-0.1750(10)	0.037(3)	0.024(3)	0.036 (5)	0.000(5)	-0.011(6)	-0.003(5)
S(3)	0.6277(5)	0.5567(2)	-0.1728(10)	0.032(3)	0.027(3)	0.029(5)	-0.017(5)	-0.008(5)	-0.006(5)
S(4)	0.5788(5)	0.5961(2)	0.2032(9)	0.034(3)	0.031(3)	0.028(5)	0.006(5)	-0.003(5)	-0.008(5)
$\tilde{C}(21)$	1.012(2)	0.5530(9)	-0.114(4)	0.046(16)	0.047(15)	0.021(25)	-0.009(27)	-0.045(28)	-0.003(26)
$\tilde{C}(22)$	0.977(2)	0.5734(10)	0.023(5)	0.041(17)	0.077(20)	0.059(30)	0.013(36)	-0.044(30)	0.048(30)
$\tilde{C}(23)$	0.865(2)	0.5532(9)	0.075(4)	0.042(15)	0.060(16)	0.034(24)	0.061(29)	0.021(27)	0.045(20)
C(24)	0.840(2)	0.5203(8)	-0.041(4)	0.061(16)	0.039(13)	0.017(23)	0.072(25)	-0.012(26)	-0.046(23)
C(25)	0.928(3)	0.5226(7)	-0.153(4)	0.084(19)	0.026(12)	0.016(24)	0.015(22)	-0.003 (28)	0.005(24)
C(31)	0.872(3)	0.6399(10)	-0.381(4)	0.051(18)	0.059(18)	0.051(32)	-0.008(34)	-0.016(32)	-0.003(30)
C(32)	0.773(4)	0.6212(9)	-0.415(2)	0.042(16)	0.055(17)	0.038(24)	-0.019(30)	0.009(27)	0.045(27)
C(33)	0.789(2)	0.5793(9)	-0.457(5)	0.029(15)	0.061(18)	0.078(32)	0.024(32)	0.014(29)	-0.063(26)
C(34)	0.921(3)	0.5770(11)	-0.444(5)	0.050(16)	0.090(22)	0.007(24)	-0.059(35)	-0.005(27)	0.001(30)
C(35)	0.963(3)	0.6152(12)	-0.382(5)	0.047(17)	0.100(25)	0.030(31)	-0.038(39)	-0.012(30)	-0.011(33)
C(41)	0.557(3)	0.7010(7)	0.153(4)	0.066(18)	0.038(13)	0.010(22)	-0.051(22)	-0.003(26)	-0.038(25)
C(42)	0.452(2)	0.7133(9)	0.107(5)	0.054(16)	0.011(11)	0.081(30)	-0.007(25)	0.060(33)	-0.001(21)
$\tilde{C}(43)$	0.377(3)	0.7000 (10)	0.242(6)	0.088(24)	0.060(18)	0.052(32)	-0.097(37)	-0.014(41)	0.031(33)
C(44)	0.435(3)	0.6784(9)	0.354(6)	0.076(21)	0.052(17)	0.054(39)	-0.056(35)	0.012(39)	-0.054(32)
C(45)	0.547(3)	0.6793(9)	0.295(5)	0.065(19)	0.048(17)	0.065(30)	-0.045(33)	-0.020(33)	0.013(28)
C(51)	0.230(2)	0.6424(9)	0.042(5)	0.046(16)	0.066(19)	0.027(29)	0.021(31)	-0.007(27)	-0.025(28)
C(52)	0.282(3)	0.6177 (9)	-0.088(4)	0.074(19)	0.081(21)	0.019(24)	0.019(25)	0.012(24)	-0.117(33)
C(53)	0.325(2)	0.5851(7)	-0.000(4)	0.058(15)	0.034(13)	0.024(22)	-0.010(22)	0.001(24)	-0.070(23)
C(54)	0.295(2)	0.5862(8)	0.165(5)	0.042(15)	0.043(15)	0.051(28)	0.012(28)	0.036(29)	-0.018(24)
C(55)	0.237(2)	0.6225(8)	0.198(5)	0.039(15)	0.038(14)	0.065(28)	-0.040(30)	0.017(29)	0.003(23)
$\tilde{\mathbf{C}}$	0.857(3)	0.6502(9)	0.179(5)	0.050(17)	0.060(18)	0.047(29)	-0.068(34)	-0.029(31)	-0.022(28)
$\tilde{C}(2)$	0.536(2)	0.5587(7)	-0.353(3)	0.045(14)	0.032(12)	0.010(19)	-0.022(19)	-0.025(20)	-0.044(21)
Č(3)	0.580(3)	0.6974(8)	-0.232(5)	0.084(21)	0.034(14)	0.040(28)	0.059(27)	-0.009(33)	-0.044(27)
C(4)	0.531(3)	0.5413(9)	0.204(5)	0.050(17)	0.057(17)	0.044(29)	0.015(30)	0.001(29)	-0.033(27)
$\mathbf{B}(1)$	0.775(2)	0.4693 (1)	0.444(4)	0.025(5)		()	()		()
F(11)	0.691(2)	0.4818(1)	0.543(3)	0.073(6)					
F(12)	0.740(2)	0.4807(1)	0.285(5)	0.113(9)					
F(13)	0.766(2)	0.4296(1)	0.434(3)	0.091(7)					
F(14)	0.877(2)	0.4840(1)	0.468(4)	0.089(7)					
B(2)	0.817(5)	0.2937(2)	0.368 (10)	0.090 (16)					
F(21)	0.807 (3)	0.3265(1)	0.451 (6)	0.133 (11)					
F(22)	0.899(4)	0.2962(1)	0.265(8)	0.164(15)					
F(23)	0.825(5)	0.2580(2)	0.427(12)	0.230(25)					
F(24)	0.707(4)	0.2847(1)	0.300(8)	0.166(15)					
$\hat{\mathbf{n}}$	0.008 (5)	0.2630 (2)	0.787(11)	0.182(21)					

0.763(3)

0.2302(1)

0.035(7) 0.130(13)

O(2)

Table 4. Bis[bis- $(\pi$ -cyclopentadienyl)niobium(V)-bis- μ methanethiolato]nickel(0) tetrafluoroborate dihydrate: interatomic distances (Å) and interbond angles (°)

Nb(1)-	-Ni	2.776(5)
ND(2)	-S(1)	2.763(3) 2.206(9)
Ni	$-\widetilde{S(2)}$	2.186 (9)
Ni	-S(3)	2.186 (9)
Ni——	-S(4)	2.187(8)
ND(1)-	-S(1)	2.481 (9)
Nb(2)	-S(2)	2.460(0) 2.468(9)
Nb(2)	S(4)	2.483 (8)
S(1)—	$-\mathbf{C}(1)$	1.84 (4)
S(2)	-C(2)	1.77(4)
S(3)	-C(3)	1.83(3)
C(21)	-C(22)	1.39(4)
C(22)	-C(23)	1.49 (5)
C(23)	-C(24)	1.46 (5)
C(24)	-C(25)	1.37 (5)
C(25) - C(21)	-C(21)	1.41(5)
C(21)	-ND(1)	2.45 (4)
C(22) - C(23) - C(23	-Nb(1)	2.44(4) 2.47(4)
C(24)	-Nb(1)	2.49(3)
C(25)—	-Nb(1)	2·44 (3)
C(31)—	-C(32)	1.30 (6)
C(32)	-C(33)	1.47 (5)
C(33) - C(34) - C(34	-C(34)	1.32(0) 1.44(6)
C(35)	-C(31)	1.36(6)
C(31)-	-Nb(1)	2.49 (5)
C(32)	-Nb(1)	2.38 (4)
C(33)	-Nb(1)	2.33(4)
C(34) C(35)	-ND(1)	2.41(4) 2.41(5)
C(41)	-C(42)	1.34(5)
C(42)	-C(43)	1.47 (6)
C(43)	-C(44)	1.37 (7)
C(44)	-C(45)	1.38 (6)
C(45)	-C(41)	1.39 (5)
C(41) - C(42) - C(42	-Nb(2)	2.40(3) 2.38(4)
C(43)	-Nb(2)	2.39(5)
C(44)	Nb(2)	2.45 (5)
C(45)—	-Nb(2)	2.40 (4)
C(51)	-C(52)	1.50(5)
C(52) = C(53) = 0	-C(53)	1.42(5) 1.42(5)
C(55)	-C(55)	1.42(3) 1.44(6)
C(55)	-C(51)	1.47 (6)
C(51)-	-Nb(2)	2.40 (4)
C(52) - C(52)	-Nb(2)	2.46 (3)
C(53) = -	-Nb(2)	2.40(3) 2.48(4)
C(55)	-Nb(2)	2.40(4) 2.47(4)
- (/		
S(1) - S(1)	-Ni - S(2)	106.0 (3)
S(1) = - S(1) = -	-Ni - S(3)	117.0(3) 108.4(3)
S(2)	-Ni - S(3)	104.5(3)
S(2)	-Ni $-S(4)$	117.1 (3)
S(3)	-Ni—S(4)	104.4 (3)
Nb(1) - S(1)	$-N_{1}$ Nb(1) S(2)	(2) 1/8.5(2) (3) (3)
S(3)	-Nb(2)-S(3)	97.8 (3)
Nb(1)-	-S(1)—Ni	72.3 (3)
C(1)	S(1)Ni	112 (1)
Nb(1)-	-S(1)-C(1)	119 (1)
Nb(1)-	-S(2) $-Ni$	72.6 (3)
C(2)		114(1)

$\begin{array}{l} Nb(1) &=& S(2) &=& C(2) \\ Nb(2) &=& S(3) &=& Ni \\ C(3) &=& S(3) &=& Ni \\ Nb(2) &=& S(3) &=& C(3) \\ Nb(2) &=& S(4) &=& Ni \\ C(4) &=& S(4) &=& Ni \\ Nb(2) &=& S(4) &=& Ni \\ C(21) &=& C(22) &=& C(23) \\ C(22) &=& C(23) &=& C(24) \\ C(23) &=& C(24) &=& C(25) \\ C(24) &=& C(25) &=& C(24) \\ C(25) &=& C(24) &=& C(25) \\ C(24) &=& C(25) &=& C(24) \\ C(25) &=& C(24) &=& C(25) \\ C(24) &=& C(25) &=& C(24) \\ C(33) &=& C(33) &=& C(34) \\ C(33) &=& C(33) &=& C(33) \\ C(34) &=& C(35) &=& C(31) \\ C(35) &=& C(31) &=& C(32) \\ C(41) &=& C(43) &=& C(44) \\ C(43) &=& C(44) &=& C(45) \\ C(44) &=& C(45) &=& C(44) \\ C(45) &=& C(41) &=& C(42) \\ C(51) &=& C(52) &=& C(53) \\ C(53) &=& C(54) &=& C(55) \\ C(54) &=& C(55) &=& C(51) \\ C(55) &=& C(51) &=& C(52) \\ \end{array}$	$\begin{array}{c} 119 \ (1) \\ 72.7 \ (3) \\ 112 \ (1) \\ 119 \ (1) \\ 72.3 \ (3) \\ 109 \ (1) \\ 116 \ (1) \\ 106 \ (3) \\ 106 \ (3) \\ 107 \ (3) \\ 111 \ (3) \\ 112 \ (4) \\ 102 \ (3) \\ 108 \ (4) \\ 112 \ (4) \\ 102 \ (3) \\ 113 \ (4) \\ 103 \ (4) \\ 111 \ (4) \\ 111 \ (3) \\ 109 \ (3) \\ 109 \ (3) \\ 104 \ (3) \\ 111 \ (3) \\ \end{array}$
$\begin{array}{c} B(1) - F(11) \\ B(1) - F(12) \\ B(1) - F(13) \\ B(1) - F(14) \end{array}$	1·34 (4) 1·45 (5) 1·33 (5) 1·26 (5)
$\begin{array}{c} F(11) & - B(1) - F(12) \\ F(11) & - B(1) - F(13) \\ F(11) & - B(1) - F(14) \\ F(12) - B(1) - F(13) \\ F(12) - B(1) - F(14) \\ F(13) - B(1) - F(14) \end{array}$	106 (3) 109 (3) 116 (3) 101 (3) 108 (3) 115 (3)
B(2)—F(21) B(2)—F(22) B(2)—F(23) B(2)—F(24)	1·31 (10) 1·27 (11) 1·30 (13) 1·39 (10)
$\begin{array}{l} F(21) &B(2) &F(22) \\ F(21) &B(2) &F(23) \\ F(21) &B(2) &F(24) \\ F(22) &B(2) &F(23) \\ F(22) &B(2) &F(24) \\ F(23) &B(2) &F(24) \end{array}$	113 (7) 126 (8) 107 (7) 103 (8) 113 (7) 93 (7)
$F(22)\cdots O(1)F(22)\cdots O(2)F(23)\cdots O(1)F(24)\cdots O(2)$	3.07 (9) 3.27 (9) 3.14 (14) 2.95 (9)

for the Mo compound) are available.* The bond distances and angles with estimated standard deviations are given in Tables 2 and 4. For the Mo complex the full variance-covariance matrix was used in the estimation of the standard deviations but only the leading diagonal terms for the Nb complex.

* A table of the observed and calculated values has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30480 (26 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

2308

Table 4 (cont.)

The crystals are built up from isolated cations about symmetry centres at $\frac{1}{2}$,0,0 and 0, $\frac{1}{2}$,0 and disordered anions in general positions in the cell.

In the cation the Ni atoms lie at the symmetry centres. Therefore, the four S atoms necessarily form a planar arrangement and the $Mo\cdots Ni\cdots Mo$ system

Fig. 1. The crystal structure of bis[bis- $(\pi$ -cyclopentadienyl)molybdenum(IV)-bis- μ -methanethiolato]nickel(II) tetrafluoroborate projected down the *c* axis.

Fig. 2. The bis[bis-(π -cyclopentadienyl)molybdenum(IV)bis- μ -methanethiolato]nickel(II) cation projected onto the plane containing the normals to the C(21-25) and C(11-15) π -cyclopentadienyl groups at the molybdenum atom.

is necessarily linear but the MoS₂NiS₂Mo system is not planar (Fig. 1). The Ni-S bonds [Ni-S(1), 2.149, Ni–S(2), 2.235 Å] differ significantly (28 σ) in length and subtend an angle at the Ni within the fourmembered ring of $82 \cdot 2^\circ$. The S atoms of the methanethiol bridges are pyramidal and the methyl groups *trans* with respect to the ring. The Mo atom lies 1.50 Å out of the NiS_4 plane on the same side as C(1) which is 0.71 Å above the plane: C(2) is 1.69 Å below the plane. The angle between the MoS_2 plane and the NiS_4 plane is 132.7° and that between the plane of NiS(1)Mo and NiS(2)Mo 126·1°. Within the four-membered rings the angles at Mo, S(1) and S(2) are 70.3, 93.6 and 90.9° respectively and the Mo-Ni distance 3.39 Å. The MoS₂ plane makes an angle of 83.6° with the plane defined by the Mo atom and the centroids of the π cyclopentadienyl rings so that S(1) and C(1) twist away from the π -cyclopentadienyl ring containing atoms C(21) to C(25). The geometry of the bis- $(\pi$ cyclopentadienyl)molybdenum moiety is that commonly found in other bent bis-(π -cyclopentadienyl) systems. The π -cyclopentadienyl rings are staggered (Fig. 2) with the Mo atom 1.97 and 1.94 Å along the normals to the rings C(11)-(15) and C(21)-(25) respectively. The ring normals are inclined at an angle of 128.3°. The Mo-C distances are in the range 2.18-2.36 Å with a pattern similar to that found in the amino-acid complexes (Prout, Allison, Delbaere & Gore, 1972) and the C-C distances within the ring are in the range 1.37-1.49 Å and do not vary in any systematic manner.

(ii) $Bis[bis-(\pi-cyclopentadienyl)niobium(V)-bis-\mu-meth$ anethiolato]nickel(0) tetrafluoroborate dihydrate

The asymmetric unit of the crystal contains one cation, two anions and two water molecules all at general positions in the unit cell (Fig. 3). The two water molecules do not interact with the cation but appear to hydrogen bond to each other, O(1)-O(2) = 2.86 Å. There are four short $O \cdots F$ contacts of 2.95, 3.07, 3.14 and 3.27 Å, all to F atoms of the anion at B(2). These contacts are much longer than in well authenticated O-H \cdots F bonds, e.g. 2.68 Å linear in FeSiF₆.6H₂O (Hamilton, 1962) and are to the anion with the larger temperature factors for the F atoms. The short contacts are not thought to represent necessarily true $O-H\cdots F$ hydrogen bonds though it is recognized that there will be strong ion-dipole and dipole-dipole interactions between the anions and the water molecules.

In the cation, the NiS₄ group has almost exact D_{2d} symmetry (Fig. 4) and is linked by planar methanethiolato bridges to two $(\pi$ -C₅H₅)Nb moieties so that the Nb-Ni-Nb system is linear and is an approximate S_4 symmetry axis for the cation as a whole including the $(\pi$ -C₅H₅) ligands and thiomethyl groups.

In the π -cyclopentadienyl rings the C–C bonds are in the range 1·30–1·52 Å (mean 1·42 Å) and show no systematic variation. The C atoms are poorly resolved with high temperature factors, a feature not un-

common in π -cyclopentadienyl complexes. The Nb–C distances are in the range 2.33-2.51 Å (mean 2.43 Å), in good agreement with the mean distances in $(\pi - C_5 H_5)_2 NbCl_2$ (2.38 Å) and $[(\pi - C_5 H_5)_2 NbCl]_2 O^{2+}$ (2.40 Å) (Prout, Cameron, Forder, Critchley, Denton & Rees, 1974). In both $(\pi$ -C₅H₅)₂Nb groups the cyclopentadienyl rings are staggered. The perpendicular distances from the Nb atoms to the rings are 2.14 Å [Nb(1)–C(21–25)], 2·08 Å [Nb(1)–C(31–35)], 2·09 Å [Nb(2)-C(41-45)] and 2.10 Å [Nb(2)-C(51-55)]; the 2.10 Å mean is in good agreement with the distances observed in $(\pi$ -C₅H₅)₂NbCl₂ (2.09 Å mean) and $[(\pi - C_5 H_5)_2 NbCl]_2 O^{2+}$ (2.10 Å mean) (Prout *et al.*, 1974). The perpendiculars to the π -cyclopentadienyl rings at the Nb atoms meet the rings close (0.085 Å mean) to their centroids making angles of 129.4° at Nb(1) and 129.9° at Nb(2) compared with 128.6° observed for the staggered form in $(\pi$ -C₅H₅)₂NbCl₂.

The point symmetry at the Nb approximates to $C_{2\nu}$. The angles between the ring-centroid-Nb-ringcentroid and S-Nb-S planes are 85.8° for Nb(1) and 85.9° for Nb(2), the deviation from 90° accommodating the steric repulsions of the *trans* methyl groups of the thiolato bridges. The Nb-S distances (2.478 Å mean) are all within 1 e.s.d. of their mean and are consistent with the observed Mo-S distances in

 $[(\pi - C_5H_5)_2Mo(\mu - SCH_3)_2]Ni^{2+}$ (2.50 Å) and

 $(\pi - C_5 H_5)_2 Mo(\mu - SCH_3)_2 Rh(\pi - C_3 H_5)_2^+$ (2.52 Å) (Prout & Rees, 1974a). However, the S-Nb-S angles (97.9°) mean) are greater than those previously found in d^1 complexes (Prout et al., 1974). The S coordination is distorted. The Nb-S-Ni angle (72.5° mean) has the same value (within experimental error) for each S and is grossly less than the expected value (in the range 90-100°) for a thiol bridge. The Nb-S-CH₃ and Ni-S-CH₃ angles (117° mean and 113° mean respectively) are consistent with steric repulsion between the methyl groups and the $(\pi$ -C₅H₅)₂Nb moiety. The S-Ni-S angles within the NbS₂Ni rings have expanded from the expected 109 to 117.0° (mean). The NbS₂Ni rings are almost planar; the angles between the NbS, and S_2Ni planes are 180 and 174° respectively for the Nb(1) and Nb(2) systems. The Nb-Ni distance across the bridge is 2.771 Å (mean). The dimensions of the NbS₂Ni four-membered bridges are entirely consistent with the Dahl criteria for metal-metal bonding (Dahl, Gil & Feltham, 1969). The coordination at the metal atom is distorted tetrahedral with the point symmetry reduced from T_d to D_{2d} by the opening of the internal (with respect to the NiS₂Nb system) S-Ni-S angle to accommodate the short Nb-Ni contacts; the S(1)-Ni-S(3) and S(2)-Ni-S(4) planes make an angle of 89.3° with each other and the external S-Ni-S angles fall in the range 104.4-108.4°.

Conclusions

The electronic structure of the Nb complex has been interpreted by Douglas & Green (1972) on the basis

of Green, Green & Prout's (1972) model of the electronic structure of bent bis-(π -cyclopentadienyl)-metal systems. It is proposed that the orbitals ψ_A and ψ_C (Green, Green & Prout, 1972) are largely involved in the bonding to the ligands and that due to the directional properties of the metal d_{z2} orbital the combination $\psi_B + d_{z2} + \psi_{B'}$, where ψ_B and $\psi_{B'}$ are associated with Nb(1) and Nb(2) respectively is likely to be a strongly bonding system. Depending whether the energy of d_{z2} is higher or lower than ψ_B and $\psi_{B'}$, the

Fig. 3. The crystal structure of bis[bis- $(\pi$ -cyclopentadienyl)niobium(V)-bis- μ -methanethiolato]nickel(0) tetrafluoroborate dihydrate projected down the *a* axis.

electrons of the bond will be associated largely with the Nb atoms or the Ni atom respectively to give either a $d^2 - d^6 - d^2$ system or a $d^0 - d^{10} - d^0$ system. The latter is favoured on general chemical grounds (see Douglas & Green, 1972). The $d^1 - d^8 - d^1$ system is rejected because there would be little basis for the short Nb-Ni contact and there would be no explanation for the diamagnetism other than antiferromagnetic coupling.

The interpretation of the stereochemistry of the Mo complex in terms of its electronic structure presents a more difficult problem. This complex has two electrons more than its Nb analogue. The Ni coordination is essentially square planar, a d^8 system with the formal oxidation state +2. The Mo \cdot Ni contact across the methanethiolato bridge is only 3.39 Å, almost the same length as the postulated Ti-Mo bond in $(\pi$ -C₅H₅)₂Ti(μ -SCH₃)₂Mo(CO)₄, 3.32 Å (Davies & Kilbourn, 1971) and much shorter than the supposed non-bonded metal-metal contacts in

 $(\pi$ -C₅H₅)₂Mo(μ -SCH₃)Rh(π -C₃H₅)₂⁺, 3·81 Å, (Prout & Rees, 1974*a*) (π -C₅H₅)₂Mo(μ -S n-butyl)₂FeCl₂, 3·69 Å, (Cameron & Prout, 1972),

 $(\pi - C_5 H_5)_2 W(\mu - SC_6 H_5)_2 Cr(CO)_4$, 3.93 Å, (Prout & Rees 1974b). The folding of the bis- μ -methanethiolato bridge is not an obvious consequence of the bonding requirements of the atoms forming the bridge; models show that planar four-membered rings with the same metal-sulphur bond lengths can have more reasonable bond angles and longer $Mo \cdots Ni$ contacts (e.g. S-Ni-S 90, Ni-S-Mo 96, S-Mo-S 78°, $d(Ni \cdots Mo)$ 3.5 Å). Nor can the fold be thought of in terms of reducing the metal-metal contact without shortening the non-bonding $S \cdots S$ contact because this latter distance would be greater in the planar system. It is believed that the fold of the bridge must be thought of either in terms of the reduction of the repulsive forces between the two bis-(π -cyclopentadienyl)molybdenumbis- μ -methanethiolato ligands in a manner analogous to the non-coplanar di-(3-methyl-1-phenyl-5-p-tolylformazyl)nickel(II) (Dale, 1967) or in terms of a bent metal-metal bond as postulated by Dahl & Wei (1963)

> 5(3) Ni (5(1) Nb(1) S(2) S(4)

Fig. 4. The bis[bis- $(\pi$ -cyclopentadienyl)niobium(V)-bis- μ -methanethiolato]nickel(0) cation seen in projection down the crystal *c* axis and showing the nickel coordination.

in $[C_2H_5SFe(CO)_3]_2$. Models suggest that steric interference between the ligands at the Ni will be in itself insufficient to produce a non-coplanar bridge and could in any case be reduced by increasing the metalmetal contact distance. There is some evidence in fact to suggest that, in related complexes

 $(\pi$ -C₅H₅)₂M(SR)₂M'L_n, the fold of the bis- μ -methanethiolato bridge increases as the possible steric interference between the bridging groups and the ligands L_n decreases. Thus the angles between the MS₂ and S₂M¹ planes in $(\pi$ -C₅H₅)₂Ti(μ -SCH₃)₂Mo(CO)₄,

 $(\pi - C_5 H_5)_2 W(\mu - SC_6 H_5)_2 Cr(CO)_4,$

 $(\pi - C_5 H_5)_2 Mo(\mu - SCH_3)_2 Rh(\pi - C_3 H_5)_2$ and

 $(\pi$ -C₅H₅)₂Mo(μ -Sn-C₄H₉)₂FeCl₂ are 180, 155, 171, 148°, and whereas in the symmetrical

 $(\pi$ -C₅H₅) $(\pi$ -C₃H₅)MoCl₂ the bridge is planar. This may point towards a basic non-coplanarity at $(\mu$ -SR)₂ bridges achieved in the absence of steric interference. If in the Mo complex a Mo-Ni bond is formed it presumably involves the donation of the pair of electrons located in ψ_A (Green, Green & Prout, 1972) to a relatively high-energy orbital of the Ni atom.

References

- CAMERON, T. S. & PROUT, C. K. (1972). Acta Cryst. B29, 453-456.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- CRUICKSHANK, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis, edited by R. PEPINSKY, J. M. ROBERTSON & J. C. SPEAKMAN. Oxford: Pergamon Press.
- DAHL, L. F., GIL, E. R. & FELTHAM, R. D. (1969). J. Amer. Chem. Soc. 91, 1653–1664.
- DAHL, L. F. & WEI, C. H. (1963). Inorg. Chem. 2, 328-333.
- DALE, D. (1967). J. Chem. Soc. (A), pp. 278-287.
- DAVIES, G. R. & KILBOURN, B. T. (1971). J. Chem. Soc. (A), pp. 87–90.
- DIAS, A. R. & GREEN, M. L. H. (1969). Chem. Commun. p. 962.
- DIAS, A. R. & GREEN, M. L. H. (1971). J. Chem. Soc. (A), pp. 1951-1956.
- DOUGLAS, W. E., GREEN, M. L. H., PROUT, C. K. & REES, G. V. (1971). Chem. Commun. pp. 896–897.
- DOUGLAS, W. E. & GREEN, M. L. H. (1972). J. Chem. Soc. Dalton, pp. 1796–1800.
- GREEN, J. C., GREEN, M. L. H. & PROUT, C. K. (1972). Chem. Commun. pp. 421-422.
- HAMILTON, W. C. (1962). Acta Cryst. 15, 353-360.
- International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-207. Birmingham: Kynoch Press.
- PROUT, C. K., ALLISON, G. B., DELBAERE, L. T. J. & GORE, E. (1972). Acta Cryst. B28, 3043-3056.
- PROUT, C. K., CAMERON, T. S., FORDER, R. A., CRITCHLEY, S. R., DENTON, B. & REES, G. V. (1974). Acta Cryst. B 30, 2290–2304.
- PROUT, C. K. & REES, G. V. (1974a). Acta Cryst. B30, 2249-2250.
- PROUT, C. K. & REES, G. V. (1974b). Acta Cryst. B30, In the press.
- SHELDRICK, G. M. (1972). Personal communication.
- WATKIN, D. J. (1972). Acta Cryst. A 28, 33-35.