The Crystal and Molecular Structures of Bis[bis-(π-cyclopentadienyl)niobium(V)-bis- μ-methanethiolato]nickel(0) Tetrafluoroborate Dihydrate and Bis[bis-(π-cyclopentadienyl)molybdenum(IV)-bis- μ-methanethiolato]nickel(II) Tetrafluoroborate

By Keith Prout, Stephen R.Critchley and Graham V.Rees
Chemical Crystallography Laboratory, Oxford University, South Parks Road, Oxford OX 1 3QS, England

(Received 7 May 1974; accepted 11 May 1974)

Abstract

The structures of the title complexes have been determined from linear diffractometer data by X-ray methods. For the Nb complex: $a=11 \cdot 44, b=33 \cdot 56, c=8.33 \AA, \gamma=92 \cdot 7^{\circ}$, space group $P 2_{\AA} / b$, Mo $K \alpha$ radiation, 1595 reflexions, final $R=0.096$. For the Mo complex: $a=10 \cdot 15, b=18 \cdot 82, c=7.85 \AA, \beta=95 \cdot 0^{\circ}$, space group $P 2_{1} / a$, Mo $K \alpha$ radiation, 1839 reflexions, final $R=0.072$. The Nb complex, which is diamagnetic, formally contains $\mathrm{Nb}(\mathrm{V})$ and $\mathrm{Ni}(0)$. The Ni atom has tetrahedral coordination and the short $(2 \cdot 78 \AA) \mathrm{Nb}-\mathrm{Ni}$ contact may correspond to a metal-metal bond. In contrast the Mo complex formally contains $\mathrm{Mo}(\mathrm{IV})$ and $\mathrm{Ni}(\mathrm{II})$; the Ni atom has square-planar coordination and the $\mathrm{Mo}-\mathrm{Ni}$ contact ($3 \cdot 39 \AA$) is much longer.

Complexes of the type $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{M}\left(\mathrm{SCH}_{3}\right)_{2}, \mathrm{M}=\mathrm{Nb}$, Mo or W, react with NiCl_{2} and $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}\right)_{2} \mathrm{Pd}$ (or ${\mathrm{Pt}) \mathrm{Cl}_{2}}^{2}$ to give trinuclear complexes of the form $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{M}\left(\mathrm{SCH}_{3}\right)_{2} \mathrm{M}^{\prime}\left(\mathrm{SCH}_{3}\right)_{2} \mathrm{M}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}{ }^{2} \mathrm{~A}_{2}^{2-}, \mathrm{M}=$ $\mathrm{Nb}, \mathrm{Mo}, \mathrm{W} ; \mathrm{M}^{\prime}=\mathrm{Ni}, \mathrm{Pd}$ or Pt (Dias \& Green, 1969, 1971). The Mo and W complexes were thought to contain d^{8} square-planar metal M^{\prime} and, by analogy, the metals M would be described as d^{2}. In the Nb complexes, however, there are two fewer electrons, formally one less associated with each of the two Nb atoms, although the complex remains diamagnetic. The structures were determined in an attempt to elucidate the chemical and electronic structures of the complexes. A preliminary account of part of this work has appeared (Douglas, Green, Prout \& Rees, 1971).

Experimental

Preparation

The compounds were prepared by Douglas \& Green (1972).

X-ray structure analysis

(i) Bis[bis-(π-cyclopentadienyl)molybdenum(IV)-bis- μ methanethiolato]nickel(II) tetrafluoroborate
$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{Mo}_{2} \mathrm{NiS}_{4}\left(\mathrm{BF}_{4}\right)_{2}, \quad M=872 \cdot 9$, monoclinic, $a=$ 10.15 (1),$\quad b=18.82$ (2), $\quad c=7.85$ (1) $\AA, \quad \beta=95.0(1)^{\circ}$, $D_{m}=1.916 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flotation), $Z=2, D_{c}=1.917$ $\mathrm{g} \mathrm{cm}^{-3}$, systematic extinctions: $h 0 l, h$ odd, $0 k 0, k$ odd, space group $P 2_{1} / a$, ($C_{2 h}^{5}$, No. 14, second setting), $\pm\left(x, y, z ; \frac{1}{2}+x, \frac{1}{2}-y, z\right)$, Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$, $\mu=17.5 \mathrm{~cm}^{-1}$.

Preliminary cell dimensions and the space group were determined from oscillation and Weissenberg photographs. A single crystal $(0.2 \times 0.2 \times 0.5 \mathrm{~mm})$ was
mounted about \mathbf{c} and the intensities of the reflexions of layers $h k 0-h k 8$ were recorded on a Hilger and Watts linear diffractometer with Mo $K \alpha$ radiation and balanced filters. 1839 independent reflexions with $I>3 \sigma$ were measured and Lorentz and polarization corrections (but no absorption corrections) were applied.

In space group $P 2_{1} / a$, the two cations must lie about the centres of symmetry with the Ni atom at a centre whilst the anions occupy general positions. From the unsharpened Patterson function the positions cf the Ni (at $\frac{1}{2}, 0,0$ and $0, \frac{1}{2}, 0$) and the Mo were determined. The other non-hydrogen atoms of the cation were obtained from subsequent Fourier syntheses. After the positions of the atoms of the cation had been improved by one cycle of full-matrix least-squares refinement with isotropic temperature factors and unit weights, a possible location of the anion was found from a difference synthesis as a group of diffuse peaks. Least-squares refinement continued with anisotropic temperature factors for the atoms of the cation and isotropic temperature factors for the anion. The refinement converged at $R=0.08$, but the temperature factors of the atoms of the anion were unsatisfactory and its geometry was poor. In another difference synthesis, computed with the F atoms excluded from the phasing, there were, in the neighbourhood of the B atom, five peaks, three large in extent but diffuse in positions appropriate for three F atoms and two smaller, sharper and closer together in the region where the fourth F was expected. Clearly the anion was disordered in a fairly complex manner. It was decided that the anion was best represented by a tetrahedral arrangement of F atoms with anisotropic thermal motion even though this was a gross approximation to the real situation. The refinement then proceeded to the convergence of the well
defined atoms at $R=0.072$. Calculations were carried out on the Oxford University ICL 1906A with a program system kindly supplied by Dr G. M. Sheldrick (1972). This program system applies a weighting scheme of the form: $w=A+\left|F_{o}\right|+B\left|F_{o}\right|^{2}$. The constants A and B are based on the approximate values suggested by Cruickshank (1961). The atomic scattering factors were from Cromer \& Waber (1965).

(ii) Bis[bis-(π-cyclopentadienyl)niobium(V)-bis- μ-meth-

 anethiolato]nickel (0) tetrafluoroborate dihydrate$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{Nb}_{2} \mathrm{NiS}_{4}\left(\mathrm{BF}_{4}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}, M=902 \cdot 8$, monoclinic, $a=11.44$ (1), $b=33.56$ (3), $c=8.33$ (1) $\AA, \gamma=92.7(1)^{\circ}$, $D_{m}=1.84 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flotation), $Z=4, \quad D_{c}=1.88$ $\mathrm{g} \mathrm{cm}^{-1}$, systematic extinctions $h k 0, k$ odd, $00 l, l$ odd. Space group $P 2_{1} / b,\left(C_{2 h}^{5}\right.$, No. 14, first setting), Mo $K \alpha$ radiation, $\lambda=0.7107 \AA, \mu=15.9 \mathrm{~cm}^{-1}$.

Preliminary cell dimensions and the space group of a dark red-brown crystal, $0.3 \times 0.1 \times 0.7 \mathrm{~mm}$, mounted about the unique c axis were determined from Weissenberg and precession photographs. The cell dimensions were refined and the intensities of 1595 independent reflexions with $I>3 \sigma$ and tolerably equal backgrounds (layers $h k 0-8$) were measured on a Hilger and Watts linear diffractometer with balanced filters. Lorentz and plarization corrections were applied but no absorption corrections were made.

The positions of the metal atoms were determined from an unsharpened Patterson function. A Fourier analysis phased on these atoms gave the positions of the S atoms and C atoms of the cyclopentadienyl rings. All the remaining non-hydrogen atoms except for one water oxygen were located from the subsequent difference syntheses. The trial structure was refined by three cycles of least-squares calculation with isotropic temperature factors, unit weights and a 'large block' approximation to the normal matrix. The remaining

Table 2. Bis[bis-(π-cyclopentadienyl)molybdenum(IV)-bis- μ-methanethiolato]nickel(II) tetrafluoroborate: interatomic distances (\AA) and interbond angles $\left({ }^{\circ}\right)$

$\mathrm{Ni}-\mathrm{S}(1)$	$2 \cdot 149$ (3)
$\mathrm{Ni}-\mathrm{S}(2)$	$2 \cdot 235$ (3)
Mo -S(1)	2.491 (3)
Mo-S(2)	$2 \cdot 514$ (3)
S(1)-C(1)	1.84 (2)
$S(2)-C(2)$	1.80 (2)
Mo-CC(11)	$2 \cdot 28$ (2)
Mo-C(12)	$2 \cdot 27$ (2)
Mo-C(13)	$2 \cdot 28$ (1)
Mo-C(14)	$2 \cdot 33$ (1)
Mo-C(15)	$2 \cdot 35$ (1)
C(11)-C(12)	1.40 (2)
C(12)-C(13)	$1 \cdot 40$ (3)
C(13)-C(14)	1.41 (3)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 39$ (3)
C(15)-C(11)	$1 \cdot 39$ (3)
Mo-C(21)	$2 \cdot 29$ (2)
Mo-C(22)	$2 \cdot 36$ (2)
Mo-C(23)	$2 \cdot 36$ (2)
Mo-C(24)	$2 \cdot 25$ (2)
Mo-C(25)	$2 \cdot 18$ (2)
C(21)-C(22)	$1 \cdot 38$ (2)
C(22)-C(23)	$1 \cdot 39$ (2)
C(23)-C(24)	$1 \cdot 43$ (2)
C(24)-C(25)	1.49 (3)
$\mathrm{C}(25)-\mathrm{C}(21)$	$1 \cdot 37$ (3)
S(1)--Mo--S(2)	$70 \cdot 3$ (1)
$\mathrm{S}(1)-\mathrm{Ni}-\ldots \mathrm{S}(2)$	$82 \cdot 2$ (1)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{Mo}$	$113 \cdot 5$ (7)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{Ni}$	$114 \cdot 3$ (6)
Mo---S(1)--Ni	$93 \cdot 6$ (1)
$\mathrm{C}(2)-\mathrm{S}(2)-\mathrm{Mo}$	$112 \cdot 2$ (5)
$\mathrm{C}(2)-\mathrm{S}(2)-\mathrm{Ni}$	$104 \cdot 6$ (5)
Mo- $\mathrm{S}(2)-\mathrm{Ni}$	$90 \cdot 9$ (1)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	106 (2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	110 (2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	107 (2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(11)$	109 (1)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	109 (2)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	110 (2)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	108 (1)

Table 1. Bis[bis-(π-cyclopentadienyl)molybdenum(IV)-bis- μ-methanethiolato]nickel(II) tetrafluoroborate: final atomic parameters

	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Mo	$0 \cdot 29324$ (9)	$0 \cdot 12425$ (5)	$0 \cdot 1407$ (1)	$0 \cdot 0310$ (5)	$0 \cdot 0259$ (4)	0.0434 (7)	0.0006 (4)	$0 \cdot 0068$ (4)	0.0040 (3)
Ni	$0 \cdot 5000$	$0 \cdot 0000$	$0 \cdot 0000$	$0 \cdot 0261$ (9)	$0 \cdot 0243$ (9)	0.0443 (15)	-0.0004 (7)	$0 \cdot 0060$ (8)	-0.0031 (7)
S(1)	0.2977 (3)	0.0274 (1)	$0 \cdot 0749$ (5)	0.0276 (13)	0.0301 (13)	0.0572 (23)	-0.0052 (12)	0.0037 (11)	-0.0024 (10)
S(2)	0.5189 (3)	$0 \cdot 1176$ (1)	0.0324 (5)	0.0295 (13)	0.0262 (12)	0.0522 (21)	-0.0014 (10)	0.0068 (11)	-0.0053 (9)
C(1)	$0 \cdot 1783$ (14)	-0.0444 (8)	-0.045 (4)	0.033 (7)	0.050 (8)	0.141 (21)	-0.033 (10)	0.013 (8)	-0.014 (6)
C(2)	$0 \cdot 5200$ (14)	$0 \cdot 1515$ (8)	-0.181 (3)	0.051 (7)	0.048 (7)	0.057 (11)	0.009 (6)	0.016 (6)	-0.006 (6)
C(11)	0.2171 (13)	0.1845 (7)	-0.100 (3)	0.045 (7)	0.045 (7)	0.066 (13)	0.012 (6)	$0 \cdot 004$ (6)	0.010 (5)
C(12)	$0 \cdot 1080$ (14)	$0 \cdot 1562$ (8)	0.025 (3)	$0 \cdot 044$ (7)	0.044 (7)	0.092 (16)	-0.004 (7)	0.009 (7)	0.002 (6)
$\mathrm{C}(13)$	$0 \cdot 1051$ (16)	$0 \cdot 1905$ (10)	$0 \cdot 133$ (3)	0.051 (8)	$0 \cdot 077$ (11)	0.083 (17)	$0 \cdot 020$ (10)	0.014 (8)	0.036 (8)
C(14)	$0 \cdot 2104$ (20)	$0 \cdot 2394$ (8)	$0 \cdot 156$ (3)	0.093 (13)	0.034 (7)	0.096 (19)	-0.021 (8)	-0.013 (11)	0.030 (8)
$\mathrm{C}(15)$	$0 \cdot 2763$ (13)	$0 \cdot 2362$ (6)	$0 \cdot 008$ (2)	0.053 (7)	$0 \cdot 032$ (6)	0.047 (11)	0.001 (5)	-0.020 (6)	0.002 (5)
C(21)	$0 \cdot 2125$ (18)	0.0638 (9)	$0 \cdot 362$ (3)	$0 \cdot 077$ (11)	0.062 (10)	0.071 (16)	0.015 (8)	0.032 (10)	-0.013 (8)
C(22)	$0 \cdot 3269$ (18)	0.0278 (8)	$0 \cdot 332$ (3)	$0 \cdot 086$ (11)	0.043 (8)	0.077 (16)	0.030 (8)	0.028 (10)	0.023 (8)
C(23)	$0 \cdot 4357$ (14)	0.0721 (8)	0.359 (2)	0.057 (8)	0.063 (8)	0.033 (11)	0.007 (6)	0.001 (6)	0.007 (7)
C(24)	$0 \cdot 3909$ (18)	$0 \cdot 1406$ (9)	0.407 (3)	$0 \cdot 078$ (11)	$0 \cdot 062$ (9)	0.043 (13)	0.009 (7)	-0.017 (8)	0.012 (8)
C(25)	$0 \cdot 2449$ (22)	$0 \cdot 1329$ (11)	0.405 (4)	$0 \cdot 096$ (13)	0.075 (12)	0.088 (19)	0.003 (10)	0.044 (12)	0.038 (10)
B(1)	0.3635 (24)	0.3505 (11)	0.552 (3)	$0 \cdot 093$ (14)	0.056 (10)	0.061 (17)	-0.002 (9)	0.035 (11)	0.004 (10)
F(1)	0.455 (3)	0.311 (1)	0.498 (7)	$0 \cdot 19$ (2)	$0 \cdot 19$ (2)	$0 \cdot 62$ (8)	-0.21 (4)	$0 \cdot 26$ (4)	-0.06 (2)
F(2)	$0 \cdot 295$ (6)	0.294 (2)	$0 \cdot 584$ (7)	$0 \cdot 45$ (6)	$0 \cdot 20$ (3)	$0 \cdot 24$ (6)	0.06 (3)	$0 \cdot 16$ (4)	-0.06 (3)
F(3)	$0 \cdot 244$ (2)	0.370 (2)	0.466 (5)	$0 \cdot 10$ (1)	$0 \cdot 31$ (4)	$0 \cdot 20$ (4)	-0.01 (2)	-0.01 (2)	0.05 (2)
F(4)	0.424 (2)	$0 \cdot 405$ (1)	$0 \cdot 639$ (6)	$0 \cdot 25$ (3)	$0 \cdot 13$ (1)	$0 \cdot 30$ (5)	-0.11 (2)	-0.05 (3)	0.07 (2)

Table 2 (cont.)

$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$104(1)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	$108(1)$
$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$	$109(2)$
$\mathrm{B}(1)-\mathrm{F}(1)$	$1.30(3)$
$\mathrm{B}(1)-\mathrm{F}(2)$	$1.30(4)$
$\mathrm{B}(1)-\mathrm{F}(3)$	$1.38(3)$
$\mathrm{B}(1)-\mathrm{F}(4)$	$1.35(3)$
$\mathrm{F}(1)-\mathrm{B}(1)-\mathrm{F}(2)$	$90(3)$
$\mathrm{F}(1)-\mathrm{B}(1)-\mathrm{F}(3)$	$128(3)$
$\mathrm{F}(1)-\mathrm{B}(1)-\mathrm{F}(4)$	$108(2)$
$\mathrm{F}(2)-\mathrm{B}(1)-\mathrm{F}(3)$	$81(3)$
$\mathrm{F}(2)-\mathrm{B}(1)-\mathrm{F}(4)$	$138(4)$
$\mathrm{F}(3)-13(1)-\mathrm{F}(4)$	$113(2)$

water molecule was then located at a suitable peak in a hole in the structure that had been detected by

Watkin's (1972) method. The refinement of the complete structure was first continued with anisotropic temperature factors for the heavy atoms and subsequently for all atoms of the cation. The refinement converged at $R=0.086$ after five cycles. The weighting scheme used was $w=1$ if $\left|F_{o}\right|<104$, otherwise $w=$ $\left(104 /\left|F_{o}\right|\right)^{2}$. Rollett \& Ford's Algol system (unpublished work) for the Oxford University KDF9 computer was used for all calculations. The scattering factors were taken from International Tables for X-ray Crystallography (1962) corrected for the real part of the anomalous dispersion.

Results and description of structures

The observed structure amplitudes and structure factors calculated from the final atomic coordinates (listed in Table 1 for the Nb compound and Table 3

Table 3. Bis[bis-(π-cyclopentadienyl)niobium(V)-bis- μ-methanethiolato]nickel(0) tetrafluoroborate dihydrate: final atomic parameters

	x / a	y / b	z / c	U_{11} or $U_{\text {iso }}$	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Nb (1)	0.8314 (2)	$0 \cdot 5852$ (1)	$-0 \cdot 1844$	0.025 (1)	0.025 (1)	0.027 (2)	0.000 (2)	-0.002 (2)	0.002 (2)
Nb (2)	0.4344 (2)	0.6425 (1)	0.0983 (3)	0.031 (1)	0.023 (1)	0.031 (2)	-0.013 (2)	0.006 (2)	-0.006 (2)
$\mathrm{Ni}(1)$	$0 \cdot 6321$ (3)	$0 \cdot 6130$ (1)	-0.0406	0.028 (1)	$0 \cdot 020$ (1)	$0 \cdot 030$ (2)	0.001 (2)	0.004 (3)	-0.002 (2)
S(1)	$0 \cdot 8019$ (6)	0.6468 (2)	-0.0274 (10)	0.037 (3)	0.030 (3)	0.035 (5)	-0.013 (5)	0.002 (6)	-0.021 (5)
S(2)	$0 \cdot 5155$ (5)	0.6505 (2)	-0.1750 (10)	0.037 (3)	$0 \cdot 024$ (3)	0.036 (5)	$0 \cdot 000$ (5)	-0.011 (6)	-0.003 (5)
S(3)	$0 \cdot 6277$ (5)	$0 \cdot 5567$ (2)	-0.1728 (10)	0.032 (3)	0.027 (3)	0.029 (5)	-0.017 (5)	-0.008 (5)	-0.006 (5)
S(4)	$0 \cdot 5788$ (5)	0.5961 (2)	$0 \cdot 2032$ (9)	0.034 (3)	0.031 (3)	0.028 (5)	0.006 (5)	-0.003 (5)	-0.008 (5)
C(21)	$1 \cdot 012$ (2)	0.5530 (9)	$-0 \cdot 114$ (4)	0.046 (16)	0.047 (15)	0.021 (25)	-0.009 (27)	-0.045 (28)	-0.003 (26)
C(22)	0.977 (2)	$0 \cdot 5734$ (10)	0.023 (5)	0.041 (17)	0.077 (20)	0.059 (30)	0.013 (36)	-0.044 (30)	0.048 (30)
C(23)	0.865 (2)	0.5532 (9)	0.075 (4)	0.042 (15)	0.060 (16)	0.034 (24)	0.061 (29)	0.021 (27)	0.045 (26)
C(24)	$0 \cdot 840$ (2)	$0 \cdot 5203$ (8)	-0.041 (4)	0.061 (16)	0.039 (13)	0.017 (23)	0.072 (25)	-0.012 (26)	-0.046 (23)
C(25)	0.928 (3)	$0 \cdot 5226$ (7)	-0.153 (4)	0.084 (19)	0.026 (12)	0.016 (24)	0.015 (22)	-0.003 (28)	0.005 (24)
C(31)	$0 \cdot 872$ (3)	0.6399 (10)	-0.381	0.051 (18)	0.059 (18)	0.051 (32)	-0.008 (34)	-0.016 (32)	-0.003 (30)
C(32)	0.773 (4)	$0 \cdot 6212$ (9)	-0.415 (2)	0.042 (16)	0.055 (17)	0.038 (24)	-0.019 (30)	0.009 (27)	0.045 (27)
C(33)	$0 \cdot 789$ (2)	0.5793 (9)	-0.457	0.029 (15)	$0 \cdot 061$ (18)	0.078 (32)	0.024 (32)	0.014 (29)	-0.063 (26)
C(34)	0.921 (3)	0.5770 (11)	-0.444 (5)	$0 \cdot 050$ (16)	$0 \cdot 090$ (22)	0.007 (24)	-0.059 (35)	-0.005 (27)	0.001 (30)
C(35)	0.963 (3)	0.6152 (12)	-0.382 (5)	0.047 (17)	$0 \cdot 100$ (25)	0.030 (31)	-0.038 (39)	-0.012 (30)	-0.011 (33)
C(41)	0.557 (3)	$0 \cdot 7010$ (7)	$0 \cdot 153$ (4)	0.066 (18)	0.038 (13)	0.010 (22)	-0.051 (22)	-0.003 (26)	-0.038 (25)
C(42)	0.452 (2)	0.7133 (9)	$0 \cdot 107$ (5)	0.054 (16)	0.011 (11)	0.081 (30)	-0.007 (25)	0.060 (33)	-0.001 (21)
C(43)	$0 \cdot 377$ (3)	0.7000 (10)	$0 \cdot 242$ (6)	0.088 (24)	$0 \cdot 060$ (18)	$0 \cdot 052$ (32)	-0.097 (37)	-0.014 (41)	0.031 (33)
C(44)	0.435 (3)	0.6784 (9)	$0 \cdot 354$ (6)	0.076 (21)	0.052 (17)	0.054 (39)	-0.056 (35)	0.012 (39)	-0.054 (32)
C(45)	$0 \cdot 547$ (3)	0.6793 (9)	$0 \cdot 295$ (5)	0.065 (19)	0.048 (17)	0.065 (30)	-0.045 (33)	-0.020 (33)	0.013 (28)
C(51)	$0 \cdot 230$ (2)	$0 \cdot 6424$ (9)	0.042 (5)	0.046 (16)	$0 \cdot 066$ (19)	0.027 (29)	0.021 (31)	-0.007 (27)	-0.025 (28)
C(52)	$0 \cdot 282$ (3)	0.6177 (9)	-0.088	0.074 (19)	0.081 (21)	0.019 (24)	0.019 (25)	0.012 (24)	-0.117 (33)
C(53)	$0 \cdot 325$ (2)	$0 \cdot 5851$ (7)	-0.000	0.058 (15)	0.034 (13)	0.024 (22)	-0.010 (22)	0.001 (24)	-0.070 (23)
C(54)	$0 \cdot 295$ (2)	0.5862 (8)	$0 \cdot 165$ (5)	0.042 (15)	0.043 (15)	0.051 (28)	$0 \cdot 012$ (28)	0.036 (29)	-0.018 (24)
C(55)	0.237 (2)	$0 \cdot 6225$ (8)	$0 \cdot 198$ (5)	0.039 (15)	0.038 (14)	0.065 (28)	-0.040 (30)	0.017 (29)	0.003 (23)
C(1)	0.857 (3)	0.6502 (9)	$0 \cdot 179$ (5)	0.050 (17)	0.060 (18)	0.047 (29)	-0.068 (34)	-0.029 (31)	-0.022 (28)
C(2)	0.536 (2)	0.5587 (7)	-0.353 (3)	0.045 (14)	0.032 (12)	0.010 (19)	-0.022 (19)	-0.025 (20)	-0.044 (21)
C(3)	$0 \cdot 580$ (3)	$0 \cdot 6974$ (8)	-0.232	0.084 (21)	0.034 (14)	0.040 (28)	0.059 (27)	-0.009	-0.044 (27)
C(4)	0.531 (3)	0.5413 (9)	0.204 (5)	0.050 (17)	0.057 (17)	$0 \cdot 044$ (29)	0.015 (30)	0.001 (29)	-0.033 (27)
B(1)	0.775 (2)	0.4693 (1)	$0 \cdot 444$ (4)	0.025 (5)					
F(11)	0.691 (2)	0.4818 (1)	0.543 (3)	$0 \cdot 073$ (6)					
$F(12)$	0.740 (2)	0.4807 (1)	$0 \cdot 285$ (5)	$0 \cdot 113$ (9)					
F(13)	0.766 (2)	0.4296 (1)	0.434 (3)	0.091 (7)					
F(14)	0.877 (2)	0.4840 (1)	$0 \cdot 468$ (4)	0.089 (7)					
B(2)	0.817 (5)	0.2937 (2)	$0 \cdot 368$ (10)	0.090 (16)					
F(21)	0.807 (3)	$0 \cdot 3265$ (1)	0.451 (6)	$0 \cdot 133$ (11)					
$F(22)$	$0 \cdot 899$ (4)	$0 \cdot 2962$ (1)	$0 \cdot 265$ (8)	$0 \cdot 164$ (15)					
F(23)	$0 \cdot 825$ (5)	$0 \cdot 2580$ (2)	0.427 (12)	$0 \cdot 230$ (25)					
F(24)	0.707 (4)	$0 \cdot 2847$ (1)	$0 \cdot 300$ (8)	$0 \cdot 166$ (15)					
$\mathrm{O}(1)$	0.908 (5)	$0 \cdot 2639$ (2)	0.787 (11)	$0 \cdot 182$ (21)					
$\mathrm{O}(2)$	0.763 (3)	$0 \cdot 2302$ (1)	0.035 (7)	$0 \cdot 130$ (13)					

Table 4. Bis $[$ bis- $(\pi-c y c l o p e n t a d i e n y l) n i o b i u m(V)-b i s-~ \mu-~$ methanethiolato]nickel(0) tetrafluoroborate dihydrate: interatomic distances (\AA) and interbond angles $\left({ }^{\circ}\right)$

Nb (1)- Ni	2.776 (5)
$\mathrm{Nb}(2)-\mathrm{Ni}$	$2 \cdot 765$ (5)
$\mathrm{Ni}-\mathrm{S}(1)$	$2 \cdot 206$ (9)
$\mathrm{Ni}-\mathrm{S}(2)$	$2 \cdot 186$ (9)
$\mathrm{Ni} \longrightarrow$ - ${ }^{\text {S }}$ (3)	$2 \cdot 186$ (9)
$\mathrm{Ni}-\mathrm{S}(4)$	$2 \cdot 187$ (8)
$\mathrm{Nb}(1)-\mathrm{S}(1)$	2.481 (9)
$\mathrm{Nb}(1)-\mathrm{S}(3)$	2.480 (8)
$\mathrm{Nb}(2)-\mathrm{S}(2)$	$2 \cdot 468$ (9)
$\mathrm{Nb}(2)-\mathrm{S}(4)$	2.483 (8)
$\mathrm{S}(1)-\mathrm{C}(1)$	1.84 (4)
$\mathrm{S}(2)-\mathrm{C}(2)$	1.77 (4)
$\mathrm{S}(3)-\mathrm{C}(3)$	1.83 (3)
$\mathrm{S}(4)-\mathrm{C}(4)$	1.89 (4)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.39 (5)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.49 (5)
$\mathrm{C}(23)-\mathrm{C}(24)$	$1 \cdot 46$ (5)
$\mathrm{C}(24)$ - $\mathrm{C}(25)$	$1 \cdot 37$ (5)
$\mathrm{C}(25)-\mathrm{C}(21)$	$1 \cdot 41$ (5)
$\mathrm{C}(21)-\mathrm{Nb}(1)$	$2 \cdot 45$ (4)
$\mathrm{C}(22)-\mathrm{Nb}(1)$	$2 \cdot 44$ (4)
$\mathrm{C}(23)-\mathrm{Nb}(1)$	$2 \cdot 47$ (4)
$\mathrm{C}(24)-\mathrm{Nb}(1)$	2.49 (3)
$\mathrm{C}(25)-\mathrm{Nb}(1)$	2.44 (3)
$\mathrm{C}(31)-\mathrm{C}(32)$	$1 \cdot 30$ (6)
$\mathrm{C}(32) \ldots \mathrm{C}(33)$	$1 \cdot 47$ (5)
$\mathrm{C}(33)-\mathrm{C}(34)$	$1 \cdot 52$ (6)
$\mathrm{C}(34)-\mathrm{C}(35)$	$1 \cdot 44$ (6)
$\mathrm{C}(35)-\mathrm{C}(31)$	$1 \cdot 36$ (6)
$\mathrm{C}(31)-\mathrm{Nb}(1)$	$2 \cdot 49$ (5)
$\mathrm{C}(32)-\mathrm{Nb}(1)$	$2 \cdot 38$ (4)
$\mathrm{C}(33)-\mathrm{Nb}(1)$	$2 \cdot 33$ (4)
$\mathrm{C}(34)-\mathrm{Nb}(1)$	$2 \cdot 41$ (4)
$\mathrm{C}(35)-\mathrm{Nb}(1)$	2.41 (5)
$\mathrm{C}(41)-\mathrm{C}(42)$	$1 \cdot 34$ (5)
$\mathrm{C}(42)-\mathrm{C}(43)$	$1 \cdot 47$ (6)
$\mathrm{C}(43)-\mathrm{C}(44)$	1.37 (7)
C(44)--C(45)	$1 \cdot 38$ (6)
$\mathrm{C}(45)-\mathrm{C}(41)$	$1 \cdot 39$ (5)
$\mathrm{C}(41)-\mathrm{Nb}(2)$	$2 \cdot 40$ (3)
$\mathrm{C}(42)-\mathrm{Nb}(2)$	$2 \cdot 38$ (4)
$\mathrm{C}(43)-\mathrm{Nb}(2)$	2.39 (5)
$\mathrm{C}(44) \cdots \mathrm{Nb}(2)$	$2 \cdot 45$ (5)
$\mathrm{C}(45)-\mathrm{Nb}(2)$	$2 \cdot 40$ (4)
C(51)--C(52)	1.50 (5)
$\mathrm{C}(52)-\mathrm{C}(53)$	$1 \cdot 42$ (5)
$\mathrm{C}(53)-\mathrm{C}(54)$	$1 \cdot 42$ (5)
C(54)--C(55)	$1 \cdot 44$ (6)
$\mathrm{C}(55)-\mathrm{C}(51)$	$1 \cdot 47$ (6)
$\mathrm{C}(51)-\mathrm{Nb}(2)$	$2 \cdot 40$ (4)
$\mathrm{C}(52)-\mathrm{Nb}(2)$	$2 \cdot 46$ (3)
$\mathrm{C}(53)-\mathrm{Nb}(2)$	$2 \cdot 40$ (3)
$\mathrm{C}(54)-\mathrm{Nb}(2)$	2.48 (4)
$\mathrm{C}(55)-\mathrm{Nb}(2)$	$2 \cdot 47$ (4)
$\mathrm{S}(1)-\mathrm{Ni}-\mathrm{S}(2)$	106.0 (3)
$\mathrm{S}(1)-\mathrm{Ni}-\mathrm{S}(3)$	$117 \cdot 0$ (3)
$\mathrm{S}(1)-\mathrm{Ni}-\mathrm{S}(4)$	108.4 (3)
$\mathrm{S}(2)-\mathrm{Ni}-\mathrm{S}(3)$	$104 \cdot 5$ (3)
$\mathrm{S}(2)-\mathrm{Ni}-\mathrm{S}(4)$	$117 \cdot 1$ (3)
$\mathrm{S}(3)-\mathrm{Ni}-\mathrm{S}(4)$	$104 \cdot 4$ (3)
$\mathrm{Nb}(1)-\mathrm{Ni}-\mathrm{Nb}(2)$	178.5 (2)
$\mathrm{S}(1)-\mathrm{Nb}(1)-\mathrm{S}(3)$	98.0 (3)
$\mathrm{S}(3)-\mathrm{Nb}(2)-\mathrm{S}(4)$	$97 \cdot 8$ (3)
$\mathrm{Nb}(1)-\mathrm{S}(1)-\mathrm{Ni}$	$72 \cdot 3$ (3)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{Ni}$	112 (1)
$\mathrm{Nb}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	119 (1)
$\mathrm{Nb}(1)-\mathrm{S}(2)-\mathrm{Ni}$	$72 \cdot 6$ (3)
$\mathrm{C}(2)-\mathrm{S}(2)-\mathrm{Ni}$	114 (1)

Table 4 (cont.)

$\mathrm{Nb}(1)--\mathrm{S}(2)-\mathrm{C}(2)$	119 (1)
$\mathrm{Nb}(2)-\mathrm{S}(3)-\mathrm{Ni}$	72.7 (3)
$\mathrm{C}(3)-\mathrm{S}(3)-\mathrm{Ni}$	112 (1)
$\mathrm{Nb}(2)-\mathrm{S}(3)-\mathrm{C}(3)$	119 (1)
$\mathrm{Nb}(2)-\mathrm{S}(4)-\mathrm{Ni}$	$72 \cdot 3$ (3)
$\mathrm{C}(4)-\mathrm{S}(4)-\mathrm{Ni}$	109 (1)
$\mathrm{Nb}(2)-\mathrm{S}(4)-\mathrm{C}(4)$	116 (1)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	106 (3)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	106 (3)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	107 (3)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	111 (3)
$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$	110 (3)
$\mathrm{C}(31)-$ C(32)-C(33)	112 (4)
$\mathrm{C}(32)-\ldots \mathrm{C}(33)-\mathrm{C}(34)$	102 (3)
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	106 (3)
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(31)$	108 (4)
$\mathrm{C}(35)-\mathrm{C}(31)-\mathrm{C}(32)$	112 (4)
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	102 (3)
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	113 (4)
C(43)--C(44)-C(45)	103 (4)
C(44)--C(45)-C(41)	111 (4)
$\mathrm{C}(45)-\mathrm{C}(41)-\mathrm{C}(42)$	111 (3)
C(51)---C(52)-C(53)	102 (3)
C(52)-C(53)-C(54)	113 (3)
C(53)--C(54)-C(55)	109 (3)
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(51)$	104 (3)
$\mathrm{C}(55)-\mathrm{C}(51)-\mathrm{C}(52)$	111 (3)
$\mathrm{B}(1)-\mathrm{F}(11)$	$1 \cdot 34$ (4)
$\mathrm{B}(1)-\mathrm{F}(12)$	$1 \cdot 45$ (5)
$\mathrm{B}(1)-\mathrm{F}(13)$	$1 \cdot 33$ (5)
$\mathrm{B}(1)-\ldots \mathrm{F}(14)$	$1 \cdot 26$ (5)
$F(11)-B(1)--F(12)$	106 (3)
$\mathrm{F}(11)-\mathrm{B}(1)-\mathrm{F}(13)$	109 (3)
$\mathrm{F}(11)-\mathrm{B}(1)-\mathrm{F}(14)$	116 (3)
$\mathrm{F}(12)-\mathrm{B}(1)-\mathrm{F}(13)$	101 (3)
$\mathrm{F}(12)-\mathrm{B}(1)-\mathrm{F}(14)$	108 (3)
$\mathrm{F}(13)-\mathrm{B}(1)-\mathrm{F}(14)$	115 (3)
$\mathrm{B}(2)-\mathrm{F}(21)$	$1 \cdot 31$ (10)
$\mathrm{B}(2)-\mathrm{F}(22)$	$1 \cdot 27$ (11)
$\mathrm{B}(2)-\ldots \mathrm{F}(23)$	$1 \cdot 30$ (13)
$\mathrm{B}(2)-\mathrm{F}(24)$	$1 \cdot 39$ (10)
$\mathrm{F}(21)--\mathrm{B}(2)-\mathrm{F}(22)$	113 (7)
$\mathrm{F}(21)-$ B(2)- $\mathrm{F}(23)$	126 (8)
$\mathrm{F}(21)-\mathrm{B}(2)-\mathrm{F}(24)$	107 (7)
$\mathrm{F}(22)-\mathrm{B}(2)-\mathrm{F}(23)$	103 (8)
$\mathrm{F}(22)-\mathrm{B}(2)-\mathrm{F}(24)$	113 (7)
$\mathrm{F}(23)-\mathrm{B}(2)-\mathrm{F}(24)$	93 (7)
$\mathrm{F}(22) \cdots \mathrm{O}(1)$	$3 \cdot 07$ (9)
$\mathrm{F}(22) \cdots \mathrm{O}(2)$	$3 \cdot 27$ (9)
$\mathrm{F}(23) \cdots \mathrm{O}(1)$	$3 \cdot 14$ (14)
$\mathrm{F}(24) \cdots \mathrm{O}(2)$	$2 \cdot 95$ (9)

for the Mo compound) are available.* The bond distances and angles with estimated standard deviations are given in Tables 2 and 4. For the Mo complex the full variance-covariance matrix was used in the estimation of the standard deviations but only the leading diagonal terms for the Nb complex.

[^0](i) Bis[bis-(π-cyclopentadienyl)molybdenum(IV)-bis- μ methanethiolato]nickel(II) tetrafluoroborate

The crystals are built up from isolated cations about symmetry centres at $\frac{1}{2}, 0,0$ and $0, \frac{1}{2}, 0$ and disordered anions in general positions in the cell.

In the cation the Ni atoms lie at the symmetry centres. Therefore, the four S atoms necessarily form a planar arrangement and the $\mathrm{Mo} \cdots \mathrm{Ni} \cdots \mathrm{Mo}$ system

Fig. 1. The crystal structure of bis[bis-(π-cyclopentadienyl)-molybdenum(IV)-bis- μ-methanethiolato]nickel(II) tetrafluoroborate projected down the c axis.

Fig. 2. The bis[bis-(π-cyclopentadienyl)molybdenum(IV)-bis- μ-methanethiolato]nickel(II) cation projected onto the plane containing the normals to the $\mathrm{C}(21-25)$ and $\mathrm{C}(11-15)$ π-cyclopentadienyl groups at the molybdenum atom.
is necessarily linear but the $\mathrm{MoS}_{2} \mathrm{NiS}_{2}$ Mo system is not planar (Fig. 1). The Ni-S bonds [$\mathrm{Ni}-\mathrm{S}(1), 2 \cdot 149$, $\mathrm{Ni}-\mathrm{S}(2), 2 \cdot 235 \AA$] differ significantly (28σ) in length and subtend an angle at the Ni within the fourmembered ring of $82 \cdot 2^{\circ}$. The S atoms of the methanethiol bridges are pyramidal and the methyl groups trans with respect to the ring. The Mo atom lies $1 \cdot 50 \AA$ out of the NiS_{4} plane on the same side as $\mathrm{C}(1)$ which is $0.71 \AA$ above the plane: $C(2)$ is $1.69 \AA$ below the plane. The angle between the MoS_{2} plane and the NiS_{4} plane is 132.7° and that between the plane of $\mathrm{NiS}(1) \mathrm{Mo}$ and $\mathrm{NiS}(2) \mathrm{Mo} 126 \cdot 1^{\circ}$. Within the four-membered rings the angles at $\mathrm{Mo}, \mathrm{S}(1)$ and $\mathrm{S}(2)$ are $70 \cdot 3,93.6$ and $90 \cdot 9^{\circ}$ respectively and the Mo-Ni distance $3 \cdot 39 \AA$. The MoS_{2} plane makes an angle of $83 \cdot 6^{\circ}$ with the plane defined by the Mo atom and the centroids of the π cyclopentadienyl rings so that $\mathrm{S}(1)$ and $\mathrm{C}(1)$ twist away from the π-cyclopentadienyl ring containing atoms $\mathrm{C}(21)$ to $\mathrm{C}(25)$. The geometry of the bis- $(\pi-$ cyclopentadienyl)molybdenum moiety is that commonly found in other bent bis-(π-cyclopentadienyl) systems. The π-cyclopentadienyl rings are staggered (Fig. 2) with the Mo atom 1.97 and $1.94 \AA$ along the normals to the rings $\mathrm{C}(11)-(15)$ and $\mathrm{C}(21)-(25)$ respectively. The ring normals are inclined at an angle of 128.3°. The Mo-C distances are in the range $2 \cdot 18-2 \cdot 36 \AA$ with a pattern similar to that found in the amino-acid complexes (Prout, Allison, Delbaere \& Gore, 1972) and the $\mathrm{C}-\mathrm{C}$ distances within the ring are in the range $1 \cdot 37-$ $1.49 \AA$ and do not vary in any systematic manner.

(ii) Bis[bis-(π-cyclopentadienyl)niobium(V)-bis- μ-methanethiolato]nickel(0) tetrafluoroborate dihydrate

The asymmetric unit of the crystal contains one cation, two anions and two water molecules all at general positions in the unit cell (Fig. 3). The two water molecules do not interact with the cation but appear to hydrogen bond to each other, $\mathrm{O}(1)-\mathrm{O}(2)=2 \cdot 86 \AA$. There are four short $\mathrm{O} \cdots \mathrm{F}$ contacts of $2.95,3.07$, 3.14 and $3.27 \AA$, all to F atoms of the anion at $B(2)$. These contacts are much longer than in well authenticated $\mathrm{O}-\mathrm{H} \cdots \mathrm{F}$ bonds, e.g. $2 \cdot 68 \AA$ I linear in $\mathrm{FeSiF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Hamilton, 1962) and are to the anion with the larger temperature factors for the F atoms. The short contacts are not thought to represent necessarily true $\mathrm{O}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds though it is recognized that there will be strong ion-dipole and dipole-dipole interactions between the anions and the water molecules.

In the cation, the NiS_{4} group has almost exact $D_{2 d}$ symmetry (Fig. 4) and is linked by planar methanethiolato bridges to two $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Nb}$ moieties so that the $\mathrm{Nb}-\mathrm{Ni}-\mathrm{Nb}$ system is linear and is an approximate S_{4} symmetry axis for the cation as a whole including the (π - $\mathrm{C}_{5} \mathrm{H}_{5}$) ligands and thiomethyl groups.

In the π-cyclopentadienyl rings the $\mathrm{C}-\mathrm{C}$ bonds are in the range $1 \cdot 30-1.52 \AA$ (mean $1.42 \AA$) and show no systematic variation. The C atoms are poorly resolved with high temperature factors, a feature not un-
common in π-cyclopentadienyl complexes. The Nb-C distances are in the range $2 \cdot 33-2 \cdot 51 \AA$ (mean $2 \cdot 43 \AA$), in good agreement with the mean distances in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2}(2 \cdot 38 \AA)$ and $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2} \mathrm{O}^{2+}\right.$ ($2 \cdot 40 \AA$) (Prout, Cameron, Forder, Critchley, Denton \& Rees, 1974). In both $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Nb}$ groups the cyclopentadienyl rings are staggered. The perpendicular distances from the Nb atoms to the rings are $2 \cdot 14 \AA$ $[\mathrm{Nb}(1)-\mathrm{C}(21-25)], 2.08 \AA[\mathrm{Nb}(1)-\mathrm{C}(31-35)], 2.09 \AA$ $[\mathrm{Nb}(2)-\mathrm{C}(41-45)]$ and $2 \cdot 10 \AA[\mathrm{Nb}(2)-\mathrm{C}(51-55)]$; the $2 \cdot 10 \AA$ mean is in good agreement with the distances observed in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2}(2.09 \AA$ mean) and $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}\right]_{2} \mathrm{O}^{2+}(2 \cdot 10 \AA$ mean) (Prout et al., 1974). The perpendiculars to the π-cyclopentadienyl rings at the Nb atoms meet the rings close $(0.085 \AA$ mean) to their centroids making angles of 129.4° at $\mathrm{Nb}(1)$ and 129.9° at $\mathrm{Nb}(2)$ compared with 128.6° observed for the staggered form in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2}$.
The point symmetry at the Nb approximates to C_{20}. The angles between the ring-centroid-Nb-ringcentroid and $\mathrm{S}-\mathrm{Nb}-\mathrm{S}$ planes are 858° for $\mathrm{Nb}(1)$ and $85 \cdot 9^{\circ}$ for $\mathrm{Nb}(2)$, the deviation from 90° accommodating the steric repulsions of the trans methyl groups of the thiolato bridges. The $\mathrm{Nb}-\mathrm{S}$ distances $(2.478 \AA$ mean $)$ are all within 1 e.s.d. of their mean and are consistent with the observed Mo-S distances in
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mu-\mathrm{SCH}_{3}\right)_{2} \mathrm{Ni}^{2+}(2 \cdot 50 \AA)\right.$ and
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mu-\mathrm{SCH}_{3}\right)_{2} \mathrm{Rh}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}^{+} \quad(2 \cdot 52 \AA)$ (Prout \& Rees, 1974a). However, the S-Nb-S angles (97.9° mean) are greater than those previously found in d^{1} complexes (Prout et al., 1974). The S coordination is distorted. The $\mathrm{Nb}-\mathrm{S}-\mathrm{Ni}$ angle (72.5° mean) has the same value (within experimental error) for each S and is grossly less than the expected value (in the range $90-100^{\circ}$) for a thiol bridge. The $\mathrm{Nb}-\mathrm{S}-\mathrm{CH}_{3}$ and $\mathrm{Ni}-\mathrm{S}-\mathrm{CH}_{3}$ angles (117° mean and 113° mean respectively) are consistent with steric repulsion between the methyl groups and the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Nb}$ moiety. The $\mathrm{S}-\mathrm{Ni}-\mathrm{S}$ angles within the $\mathrm{NbS}_{2} \mathrm{Ni}$ rings have expanded from the expected 109 to 117.0° (mean). The $\mathrm{NbS}_{2} \mathrm{Ni}$ rings are almost planar; the angles between the NbS_{2} and $\mathrm{S}_{2} \mathrm{Ni}$ planes are 180 and 174° respectively for the $\mathrm{Nb}(1)$ and $\mathrm{Nb}(2)$ systems. The $\mathrm{Nb}-\mathrm{Ni}$ distance across the bridge is $2.771 \AA$ (mean). The dimensions of the $\mathrm{NbS}_{2} \mathrm{Ni}$ four-membered bridges are entirely consistent with the Dahl criteria for metal-metal bonding (Dahl, Gil \& Feltham, 1969). The coordination at the metal atom is distorted tetrahedral with the point symmetry reduced from T_{d} to $D_{2 d}$ by the opening of the internal (with respect to the $\mathrm{NiS}_{2} \mathrm{Nb}$ system) $\mathrm{S}-\mathrm{Ni}-\mathrm{S}$ angle to accommodate the short $\mathrm{Nb}-\mathrm{Ni}$ contacts; the $\mathrm{S}(1)-$ $\mathrm{Ni}-\mathrm{S}(3)$ and $\mathrm{S}(2)-\mathrm{Ni}-\mathrm{S}(4)$ planes make an angle of 89.3° with each other and the external $\mathrm{S}-\mathrm{Ni}-\mathrm{S}$ angles fall in the range $104 \cdot 4-108 \cdot 4^{\circ}$.

Conclusions

The electronic structure of the Nb complex has been interpreted by Douglas \& Green (1972) on the basis
of Green, Green \& Prout's (1972) model of the electronic structure of bent bis-(π-cyclopentadienyl)-metal systems. It is proposed that the orbitals ψ_{A} and ψ_{C} (Green, Green \& Prout, 1972) are largely involved in the bonding to the ligands and that due to the directional properties of the metal $d_{=2}$ orbital the combination $\psi_{B}+d_{22}+\psi_{B^{\prime}}$, where ψ_{B} and ψ_{B}, are associated with $\mathrm{Nb}(1)$ and $\mathrm{Nb}(2)$ respectively is likely to be a strongly bonding system. Depending whether the energy of d_{22} is higher or lower than ψ_{B} and $\psi_{B^{\prime}}$, the

Fig. 3. The crystal structure of bis[bis-(π-cyclopentadienyl)-niobium(V)-bis- μ-methanethiolato]nickel(0) tetrafluoroborate dihydrate projected down the a axis.
electrons of the bond will be associated largely with the Nb atoms or the Ni atom respectively to give either a $d^{2}-d^{6}-d^{2}$ system or a $d^{0}-d^{10}-d^{0}$ system. The latter is favoured on general chemical grounds (see Douglas \& Green, 1972). The $d^{1}-d^{8}-d^{1}$ system is rejected because there would be little basis for the short $\mathrm{Nb}-\mathrm{Ni}$ contact and there would be no explanation for the diamagnetism other than antiferromagnetic coupling.

The interpretation of the stereochemistry of the Mo complex in terms of its electronic structure presents a more difficult problem. This complex has two electrons more than its Nb analogue. The Ni coordination is essentially square planar, a d^{8} system with the formal oxidation state +2 . The Mo $\cdot \mathrm{Ni}$ contact across the methanethiolato bridge is only $3.39 \AA$, almost the same length as the postulated $\mathrm{Ti}-\mathrm{Mo}$ bond in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mu-\mathrm{SCH}_{3}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}, 3.32 \AA$ (Davies \& Kilbourn, 1971) and much shorter than the supposed non-bonded metal-metal contacts in
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mu-\mathrm{SCH}_{3}\right) \mathrm{Rh}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}^{+}, 3 \cdot 81 \AA$, (Prout \& Rees, $1974 a)\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mu-\mathrm{S} . \mathrm{n} \text {-butyl })_{2} \mathrm{FeCl}_{2}, 3.69 \AA$, (Cameron \& Prout, 1972),
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{4}, 3.93 \AA$, (Prout \& Rees $1974 b$). The folding of the bis- μ-methanethiolato bridge is not an obvious consequence of the bonding requirements of the atoms forming the bridge; models show that planar four-membered rings with the same metal-sulphur bond lengths can have more reasonable bond angles and longer $\mathrm{Mo} \cdots \mathrm{Ni}$ contacts (e.g. S-Ni-S 90, Ni-S-Mo 96, S-Mo-S $78^{\circ}, d(\mathrm{Ni} \cdots \mathrm{Mo})$ $3 \cdot 5 \AA)$. Nor can the fold be thought of in terms of reducing the metal-metal contact without shortening the non-bonding $S \cdots S$ contact because this latter distance would be greater in the planar system. It is believed that the fold of the bridge must be thought of either in terms of the reduction of the repulsive forces between the two bis-(π-cyclopentadienyl)molybdenum-bis- μ-methanethiolato ligands in a manner analogous to the non-coplanar di-(3-methyl-1-phenyl-5-p-tolylformazyl)nickel(II) (Dale, 1967) or in terms of a bent metal-metal bond as postulated by Dahl \& Wei (1963)

Fig. 4. The bis[bis-(π-cyclopentadienyl)niobium(V)-bis- μ methanethiolato]nickel (0) cation seen in projection down the crystal c axis and showing the nickel coordination.
in $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SFe}(\mathrm{CO})_{3}\right]_{2}$. Models suggest that steric interference between the ligands at the Ni will be in itself insufficient to produce a non-coplanar bridge and could in any case be reduced by increasing the metalmetal contact distance. There is some evidence in fact to suggest that, in related complexes
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{M}(\mathrm{SR})_{2} \mathrm{M}^{\prime} \mathrm{L}_{n}$, the fold of the bis- μ-methanethiolato bridge increases as the possible steric interference between the bridging groups and the ligands L_{n} decreases. Thus the angles between the MS_{2} and $\mathrm{S}_{2} \mathrm{M}^{1}$ planes in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mu-\mathrm{SCH}_{3}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$,
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}\left(\mu-\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{4}$,
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mu-\mathrm{SCH}_{3}\right)_{2} \mathrm{Rh}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}$ and
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mu-\mathrm{Sn}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{FeCl}_{2}$ are 180, 155, 171, 148°, and whereas in the symmetrical
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{MoCl}_{2}$ the bridge is planar. This may point towards a basic non-coplanarity at $(\mu-S R)_{2}$ bridges achieved in the absence of steric interference. If in the Mo complex a Mo-Ni bond is formed it presumably involves the donation of the pair of electrons located in ψ_{A} (Green, Green \& Prout, 1972) to a relatively high-energy orbital of the Ni atom.

References

Cameron, T. S. \& Prout, C. K. (1972). Acta Cryst. B29, 453-456.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Cruickshank, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis, edited by R. Pepinsky, J. M. Robertson \& J. C. Speakman. Oxford: Pergamon Press.
Dahl, L. F., Gil, E. R. \& Feltham, R. D. (1969). J. Amer. Chem. Soc. 91, 1653-1664.
Dahl, L. F. \& Wei, C. H. (1963). Inorg. Chem. 2, 328-333.
Dale, D. (1967). J. Chem. Soc. (A), pp. 278-287.
Davies, G. R. \& Kilbourn, B. T. (1971). J. Chem. Soc. (A), pp. 87-90.
Dias, A. R. \& Green, M. L. H. (1969). Chem. Commun. p. 962 .

Dias, A. R. \& Green, M. L. H. (1971). J. Chem. Soc. (A), pp. 1951-1956.
Douglas, W. E., Green, M. L. H., Prout, C. K. \& Rees, G. V. (1971). Chem. Commun. pp. 896-897.

Douglas, W. E. \& Green, M. L. H. (1972). J. Chem. Soc. Dalton, pp. 1796-1800.
Green, J. C., Green, M. L. H. \& Prout, C. K. (1972). Chem. Commun. pp. 421-422.
Hamilton, W. C. (1962). Acta Cryst. 15, 353-360.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-207. Birmingham: Kynoch Press.
Prout, C. K., Allison, G. B., Delbaere, L. T. J. \& Gore, E. (1972). Acta Cryst. B28, 3043-3056.

Prout, C. K., Cameron, T. S., Forder, R. A., Critchley, S. R., Denton, B. \& Rees, G. V. (1974). Acta Cryst. B30, 2290-2304.
Prout, C. K. \& Rees, G. V. (1974a). Acta Cryst. B30, 2249-2250.
Prout, C. K. \& Rees, G. V. (1974b). Acta Cryst. B30, In the press.
Sheldrick, G. M. (1972). Personal communication.
Watkin, D. J. (1972). Acta Cryst. A 28, 33-35.

[^0]: * A table of the observed and calculated values has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30480 (26 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 1 1NZ, England.

